Bicyclo[3.3.1]nonanes as synthetic intermediates. Part 20. ${ }^{1}$ A symmetric synthesis of the indolizidine alkaloids monomorine I and indolizidine 223AB

Takefumi M omose,* M inoru Toshima, Sumie Seki, Yayoi Koike, N aoki Toyooka and Y oshiro H irait

Faculty of Pharmaceutical Sciences, Toyama M edical and P harmaceutical U niversity, Sugitani 2630, Toyama 930-01, J apan

Total syntheses of the indolizidine alkaloids monomorine I and indolizidine 223A B have been achieved by starting from the chiral cis-2,5-disubstituted pyrrolidine or cis-2,6-disubstituted piperidine obtained from the asymmetric cleavage of 8 -azabicyclo[3.2.1]octan-3-one or 9-azabicyclo[3.3.1]nonan-3-one at the 'fork head'.

Introduction

In the preceding paper, ${ }^{1}$ we described the asymmetric cleavage of 8 -azabicyclo[3.2.1]octan-3-one, 9-azabicyclo[3.3.1]nonan-3one or 10 -azabicyclo[4.3.1]decan-3-one at the 'fork head' by use of K oga's protocol ${ }^{2}$ to give the cis-2,5-disubstituted pyrrolidine $(-)-1, \quad$ cis-2,6-disubstituted piperidine (-)-2 or cis-2,7disubstituted hexahydroazepine (-)-3. In order to illustrate their synthetic availability as chiral building blocks for alkaloid synthesis, we investigated the asymmetric synthesis of indolizidine alkaloids of significant biological activity. This paper describes a full account of the experiments investigated. ${ }^{3}$

Results and discussion

A symmetric total synthesis of (+)-monomorine I

$(+)$-M onomorine I 4, a trail pheromone of the pharaoh ant, ${ }^{4}$ is a suitable target to test new synthetic strategies, having been synthesised earlier by several groups. ${ }^{5}$ Although, this alkaloid could be synthesised via a 'chiral pyrrolidine' or 'chiral piperidine' route, we chose the former ${ }^{5 \mathrm{a}}$ as shown in Scheme 2.

cheme 2

[^0]Protection of the hydroxy group in (-)-1 with methoxymethyl chloride (M OM CI) followd by reduction with lithium triethylborohydride (Super-H ydride) afforded the alcohol (-)-5 in 84% overall yield. Carbon-chain elongation of the 2 hydroxyethyl group of (-)-5 was effected through Grignard cross coupling of the iodide $(+)-7$, prepared from (-)-5 via its toluene-p-sulfonate (-)-6, with allylmagnesium chloride in the presence of copper(I) iodide (Cul) to give the olefin (-)-8 in 49% overall yield. Deprotection of $(-)-8$ with acid followed by Swern oxidation of the resulting alcohol and subsequent Wittig reaction afforded the diene 9 in 77% overall yield. The siteselective oxidation of 9 by the Wacker process proceeded smoothly to give the ketone 10 (84\%). Finally, hydrogenation of 10 over 5\% palladium-on-carbon furnished (+)-monomorine I $4(70 \%)$, the ${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C} N M R$ and mass spectral results for which were identical with those of an authentic specimen. ${ }^{59}$ The present result also established the absolute stereochemistry of the starting pyrrolidine synthon (-)-1.

E nantiodivergent synthesis of indolizidine 223AB

A variety of biologically significant alkaloids have been isolated from neotropical dart-poison frogs (family Dendrobatidae). ${ }^{6}$ In order to demonstrate the synthetic utility of $(-)-2$, we investigated the enantiodivergent synthesis of indolizidine 223A B 11, a 3,5 -disubstituted indolizidine class of Dendrobatid alkaloid, by starting from the common chiral synthon piperidine (-)-2.
Protection of the hydroxy group in (-)-2 with tert-butyldimethylsilyl chloride (TBSCI) gave the ether (-)-12 (90\%), which was reduced with Super-H ydride to afford the alcohol $(+)-13(95 \%)$. Protection of the hydroxy group in (+)-13 with MOMCI followed by deprotection at the other α-substituent with tetrabutylammonium fluoride (TBAF) gave the alcohol $(-)-14$ in 98% overall yield. The Swern oxidation of (-)-14 and subsequent Wittig reaction of the resulting aldehyde afforded the olefin 15 in 74% overall yield. H ydrogenation of $\mathbf{1 5}$ over 5\% palladium-on-carbon gave the piperidine (-)-16 (86\%). The piperidine (-)-16 was converted into the iodide (+)-18 via the methanesulfonate (-)-17 in 68% overall yield. The reaction of $(+)-18$ with lithium pent-1-yn-1-ide gave the alkyne (-)-19 (98\%). Reduction of (-)-19 under Birch conditions afforded the E -olefin (-)-20 as a single product in 94% yield. D eprotection of (-)-20 with lithium propanethiolate ${ }^{7}$ in hexamethylphosphoric triamide (HMPA) gave the amine (-)-21 (83%). Finally, (-)-21 was converted into the desired (-)-indolizidine 223AB 11 via the N-chloropiperidine (-)-22 according to Broka's method. ${ }^{8}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral results for synthetic $(-)-11$ were identical with those of a natural sample ${ }^{6 b}$

Scheme 3 Reagents and conditions: i, M OM CI, Hünig's base, $0^{\circ} \mathrm{C} \sim$ RT; ii, Super-H ydride, RT; iii, TsCI, pyridine, RT; iv, N al, acetone, RT; v, allylmagnesium chloride, Cul, $-78 \sim-35^{\circ} \mathrm{C}$; vi, conc. $\mathrm{HCl}, \mathrm{M} \mathrm{eOH}$, $50^{\circ} \mathrm{C}$; vii, $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} \sim \mathrm{RT}$; viii, $(\mathrm{Ph})_{3} \mathrm{P}^{+} \mathrm{PrBr}^{-}$ BuLi, $0^{\circ} \mathrm{C} \sim \mathrm{RT}$; ix, $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}$, D M F-H2O, RT; $x, \mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}$
N ext, we examined a formal synthesis of (+)-11 by starting from the same common synthon piperidine (-)-2. The Swern oxidation of (+)-13, obtained from (-)-2 in two steps as above, and subsequent Wittig reaction of the resulting aldehyde provided the olefin (-)-23 in 48% overall yield. Hydrogenation of (-)-23 over 5\% palladium-on-carbon and subsequent deprotection with TBAF afforded the alcohol (-)-24 in 90\% overall yield. The Swern oxidation of (-)-24 and subsequent Wittig reaction of the resulting aldehyde gave the enol ether $\mathbf{2 5}$ in 62\% overall yield as a $3: 2$ mixture of E and Z isomers. A cid hydrolysis of the mixture of E and Z enol ethers and subsequent reduction of the resulting aldehyde with sodium borohydride (NaBH_{4}) provided the homologated alcohol (-)-26 in 68% overall yield. Finally, the alcohol (-)-26 was converted into the iodide (-)-18 via the methanesulfonate (+)-17. TheIR, ${ }^{1} \mathrm{H}$ NMR and mass spectral results for synthetic (-)-18 were identical with those of $(+)-18$.

C onclusion

We have described the efficient total synthesis of (+)monomorine I 4 and (-)-indolizidine 223AB 11 starting from cis-(2,5)-pyrrolidine (-)-1 and cis-(2,6)-piperidine (-)-2, respectively, chiral synthons readily available from the asymmetric cleavage of nitrogen-bridged bicyclic systems.

Experimental

Optical rotations were measured with a JA SCO DIP-140 polarimeter and are recorded as $10^{-1} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded on a JASCO A-102 grating spectrophotometer or Perkin-Elmer 1600 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a JEOL GX-270 spectrometer in deuteriochloroform unless otherwise stated. Chemical shifts are given in ppm (δ) downfield from internal tetramethylsilane Resonance patterns in ${ }^{1} \mathrm{H}$ NMR spectra are shown as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad. Low- and high-resolution M S were obtained on a

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{TBSCI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$; ii, SuperHydride, RT; iii, M OM CI, Hünig's base; iv, TBAF, THF, RT; v, $(\mathrm{COCI})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C} \sim \mathrm{RT}$; vi, $(\mathrm{Ph})_{3} \mathrm{P}^{+} \mathrm{EtBr}^{-}, \mathrm{BuLi}, 0^{\circ} \mathrm{C} \sim$ RT; vii, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}$; viii, conc. $\mathrm{HCl}, \mathrm{MeOH}$, reflux; ix, M sCl , pyridine, RT; x, N al , acetone, RT; xi, pent-1-yne, BuLi, RT; xii, N a, liq. $\mathrm{NH}_{3},-33^{\circ} \mathrm{C}$; xiii, $\mathrm{PrSH}, \mathrm{BuLi}, \mathrm{H}$ M PA, RT; xiv, NCS; xv, CuCl, CuCl_{2}; $\mathrm{xvi}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{A} I \mathrm{BN}$, reflux

JEOL JM S D-200 instrument with a direct inlet system at 70 eV . M ps were determined with a Yanagimoto micro-melting point apparatus and are uncorrected. Elemental analyses were performed by the microanalytical laboratory of this University. Column chromatography was performed on silica gel [F ujiDavison BW-200, M erck 60 (N o 9385)]. The organic extracts were dried over $\mathrm{M}_{\mathrm{gSO}}^{4}$ unless otherwise stated.

Benzyl (2R ,5S)-(-)-2-(2-hydrox yethyl)-5-(methoxymethox y-methyl)pyrrolidine-1-carboxylate 5
To a stirred solution of $(-)-1^{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ were added MOMCI ($0.17 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}$) and diisopropylethylamine (H ünig's base) ($0.48 \mathrm{~cm}^{3}, 2.76 \mathrm{mmol}$), and the resulting solution was stirred at room temperature for 8 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$, and the organic layer was separated, washed with saturated brine ($5 \mathrm{~cm}^{3} \times 2$), dried and evapaorated to give a pale yellow oil, which was used directly in the next step. To a stirred solution of the oil obtained above in TH F ($15 \mathrm{~cm}^{3}$) was added Super-H ydride ($4.1 \mathrm{~cm}^{3}, 4.17 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the solution was stirred for 2 h at room temperature. The reaction was quenched by the addition of water $\left(5 \mathrm{~cm}^{3}\right)$ to the reaction mixture after which the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to afford a colourless oil, which was purified by column chromatography on SiO_{2} (10 g; hexane-acetone, 10:1) to give (-)-5 [497 mg, 84% from $(-)-1$] as a colourless oil (Found: $\mathrm{M}^{+}, 323.1725$. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $\mathrm{M}, 323.1731$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 3445$ and 1689; $\delta_{\mathrm{H}} 1.50-1.82\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.83-2.14(5 \mathrm{H}, \mathrm{m}$,

(+)-13

(-)-26

(-)-23
washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated aqueous NaHCO_{3} (5 $\mathrm{cm}^{3} \times 1$) and saturated brine ($5 \mathrm{~cm}^{3} \times 1$), dried and evaporated to afford a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(7 \mathrm{~g}$; hexane-acetone $50: 1)$ to give (+)-7 (390 mg, 99\%) as a pale yellow oil (Found: $\mathrm{M}^{+}, 433.0798$. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires M , 433.0752); $v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}}$ 1.50-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.80-2.10 ($4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}$), 2.95-3.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OM}$ OM), $3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.40-3.65$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{l}\right), 3.85-4.10(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 4.55(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 7.21-7.39 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $[a]_{0}^{26}+6.0\left(c 1.27, \mathrm{CHCl}_{3}\right)$.

Benzyl (2S,5S)-(-)-2-(methox ymethoxymethyl)-5-pent-4-enyl-pyrrolidine-1-carboxylate 8
To a stirred suspension of $\mathrm{Cul}(520 \mathrm{mg}, 2.70 \mathrm{mmol})$ in THF (2 cm^{3}) was added allylmagnesium chloride ($2.0 \mathrm{~m} ; 2.70 \mathrm{~cm}^{3}, 5.40$ mmol) at $-78^{\circ} \mathrm{C}$; the reaction temperature was then gradually raised to $-40^{\circ} \mathrm{C}$, and the stirring was continued for 10 min . The suspension was recooled at $-78^{\circ} \mathrm{C}$, and (+)-7 (390 mg , $0.90 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) was added to the suspension; the stirring was then continued at $-40^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ to the mixture after which the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (30 g ; hexane-acetone 120:1) to afford (-)-8 ($218 \mathrm{mg}, 70 \%$) as a colourless oil (Found: M^{+}, 347.2106. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires M , 347.2096); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}} 1.20-1.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.85-$ $1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.00-2.19(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H})$, $3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $3.54-3.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OM} \mathrm{OM}\right), 3.85(1 \mathrm{H}$, br, 2- or $5-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{br}, 2-$ or $5-\mathrm{H}), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.85-5.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.65-5.91$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$) and $7.30-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;[a]_{\mathrm{D}}^{26}-1.2(\mathrm{c} 1.22$, CHCl_{3}).

Benzyl (2S,5S)-2-but-1-enyl-5-pent-4-enylpyrrolidine-1carboxylate 9

To a stirred solution of (-)-8 ($218 \mathrm{mg}, 0.63 \mathrm{mmol}$) in $\mathrm{M} \mathrm{eOH}(1$ cm^{3}) was added concentrated hydrochloric acid ($0.1 \mathrm{~cm}^{3}$), and the resulting mixture was stirred for 1 h at $60^{\circ} \mathrm{C}$. A fter cooling, the reaction mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$ to quench the reaction, after which the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 1,5 \mathrm{~cm}^{3} \times 3\right)$. The organic extracts were combined, dried and evaporated to give a colourless oil (190 mg), which was used directly in the next step. To a stirred solution of oxalyl chloride ($0.08 \mathrm{~cm}^{3}$, $0.942 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added D M SO $\left(0.13 \mathrm{~cm}^{3}\right.$, 1.05 mmol) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min ; the oil obtained above (190 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was then added to the mixture, and the stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 45 min . To the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.37 \mathrm{~cm}^{3}, 2.83\right.$ mmol) at $-78^{\circ} \mathrm{C}$, and the reaction temperature was gradually increased to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(45 \mathrm{~cm}^{3}\right.$), and the organic layer was washed with water (5 $\mathrm{cm}^{3} \times 3$), dried and evaporated to afford a pale yellow oil (179 mg), which was used directly in the next step. To the suspension of propyl(triphenyl)phosphonium bromide ($600 \mathrm{mg}, 1.56$ mmol) in THF ($5 \mathrm{~cm}^{3}$) was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $0.76 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at room temperature. To the mixture was added the oil obtained above (179 mg) in THF ($3 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 3 h at room temperature The reaction was quenched by the addition of water ($1 \mathrm{~cm}^{3}$) to the mixture, after which the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{cm}^{3} \times 4$). The organic extracts were combined, washed with saturated brine ($5 \mathrm{~cm}^{3} \times 1$), dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (10 g; hexane-acetone $80: 1$) to afford $9[150 \mathrm{mg}, 77 \%$ from $(-)-8]$ as a pale yellow oil (Found: $\mathrm{M}^{+}, 327.2222 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}$
requires $\mathrm{M}, 327.2197)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1}: 1697 ; \delta_{\mathrm{H}} 0.70-1.11(3 \mathrm{H}$, $\left.\mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.20-1.55\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 1.75-2.43 ($8 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{3}, 3-$ and $4-\mathrm{H}$), 3.78-4.02 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 4.56-4.68 (1 H, m, 2-H), 4.85-5.19 (4 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.21-5.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}\right)$, $5.65-5.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.24-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Benzyl (2S,5S)-2-(but-1-enyl)-5-(4-oxopentyl)pyrrolidine-1carboxylate 10

To a stirred solution of $9(30 \mathrm{mg}, 0.092 \mathrm{mmol})$ in DM F (1.5 cm^{3}) and water ($0.5 \mathrm{~cm}^{3}$) were added $\mathrm{CuCl}(10 \mathrm{mg}, 0.092 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(5 \mathrm{mg}, 0.028 \mathrm{mmol})$, and the resulting suspension was stirred for 17 h at room temperature under an oxygen atmosphere. The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(0.5 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, washed with saturated brine ($5 \mathrm{~cm}^{3} \times 1$), dried and evaporated to afford a pale yellow oil, which was purified by column chromatography in $\mathrm{SiO}_{2}(3 \mathrm{~g}$; hexane-acetone, $50: 1$) to give $10(26.4 \mathrm{mg}, 84 \%)$ as a colourless oil (Found: M^{+}, 343.2138. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires M , 343.2145); $v_{\max }($ neat $) / \mathrm{cm}^{-1}: 1697 ; \delta_{\mathrm{H}} 0.71-1.08(3 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.46-1.82 (6 H, m), 1.85-2.07(4 H, m), 2.10(3 $\mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}$), 2.30-2.55 ($2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{COCH}_{3}$), 3.78-3.97 (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.50-4.78(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.11\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 5.18-5.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$) and 7.31-7.51 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

(+)-M onomorine I 4

To a stirred solution of the amine $\mathbf{1 0}(100 \mathrm{mg}, 0.291 \mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was added $5 \% \mathrm{Pd}-\mathrm{C}(80 \mathrm{mg})$, and the resulting suspension was hydrogenated at 1 atm for 4 h . The catalyst was removed by filtration through a Celite plug and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and washings were evaporated to afford a colourless oil, which was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(20 \mathrm{~g}\right.$; hexane $\left.-\mathrm{CHCl}_{3}, 10: 1\right)$ to give (+)-4 $\{40 \mathrm{mg}$ $70 \%,[a]_{0}^{36}+30.0$ (c 1.80 , hexane) $\}$ as a colourless oil. Recrystallisation of the corresponding hydrochloride from diethyl etherEtOH furnished enantiomerically pure (+)-4 (21 mg), $[a]_{D}^{26}$ +33.2 (c 0.98 , hexane) $\left\{\right.$ lit., ${ }^{5 a}[a]_{D}^{22}+34.3$ (c 1.02 , hexane) $\} ;$ $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2957,2859,1655,1553,1478$ and $1455 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}_{3}\right), 1.29$ ($6 \mathrm{H}, \mathrm{m}$), $1.43(4 \mathrm{H}, \mathrm{m}), 1.70(6 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{br}$ s), $2.20(1$ $\mathrm{H}, \mathrm{br} \mathrm{s})$ and $2.46(1 \mathrm{H}, \mathrm{brs}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}) 14.17(\mathrm{q}), 22.87(\mathrm{t})$, $22.93(\mathrm{t}), 24.94(\mathrm{t}), 29.41(\mathrm{t}), 29.78(\mathrm{t}), 30.35(\mathrm{t}), 30.95(\mathrm{t}), 35.88$ (t), 39.74 (t), 60.29 (d), 62.93 (d) and 67.19 (d); m/z $195\left(\mathrm{M}^{+}\right)$, 194, 180, 139, 138 and 98.

M ethyl (2R,6S)-(-)-6-(tert-butyldimethylsiloxymethyl)-1methox ycarbonylpiperidin-2-ylethanoate 12

To a stired solution of $(-)-2^{1}(2.0 \mathrm{~g}, 8.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ cm^{3}) were added TBSCI ($1.47 \mathrm{~g}, 12.3 \mathrm{mmol}$), DMAP (81 mg , $0.82 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(2.7 \mathrm{~cm}^{3}, 24.6 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 21 h at room temperature. The reaction was quenched by the addition of water ($5 \mathrm{~cm}^{3}$) to the mixture, after which the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($20 \mathrm{~cm}^{3} \times 5$). The organic extracts were combined, washed with saturated brine ($10 \mathrm{~cm}^{3} \times 2$), dried and evaporated to give an oil, which was purified by column chromatography on SiO_{2} (50 g ; hexane-acetone, $50: 1$) to afford (-)-12 ($2.68 \mathrm{~g}, 90 \%$) as a colourless oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 302.1424. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}, 302.1424$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1741$ and 1701; $\delta_{\mathrm{H}} 0.07$ [6 H, s, Si(CH $\left.)_{2}\right)_{2}$, $0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41-1.69$ $(6 \mathrm{H}, \mathrm{m}, 3-\sim 5-\mathrm{H}), 3.48-3.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTBS}\right.$ and $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16(1$ $\mathrm{H}, \mathrm{br}, 6-\mathrm{H})$ and $4.60(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}) ;[\mathrm{a}]_{\mathrm{D}}^{26}-24.4\left(\mathrm{c} \mathrm{1.06}, \mathrm{CHCl}_{3}\right)$.

M ethyl (2S,6R)-(+)-2-(tert-butyldimethylsilox ymethyl)-6-(2-hydroxyethyl)piperidine-1-carboxylate 13

To a stirred solution of (-)-12 ($2.83 \mathrm{~g}, 7.8 \mathrm{mmol}$) in TH F (70 cm^{3}) was added Super-H ydride ($15.6 \mathrm{~cm}^{3}, 15.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$
and the resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by addition of water (20 cm^{3}) to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3} \times 10\right)$. The organic extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on SiO_{2} (90 g ; hexane-acetone, $10: 1$) to afford (+)-13 ($2.7 \mathrm{~g}, 95 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 331.2160 . \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N} \mathrm{O}_{4}$ Si requires M , 311.2182); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3461,1733$ and 1695; $\delta_{\mathrm{H}} 0.06[6 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$], $0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.58-1.76(8 \mathrm{H}, \mathrm{m}, 3-, 4-$, $5-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.45-3.64\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTBS}\right.$ and $\mathrm{CH}_{2} \mathrm{OH}$), $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.14-4.26(1 \mathrm{H}, \mathrm{br}, 2-$ or $6-\mathrm{H})$, $4.36-4.56(1 \mathrm{H}, \mathrm{br}, 2-$ or $6-\mathrm{H})$; $[a]_{\mathrm{D}}^{26}+6.6\left(\mathrm{c} 1.09, \mathrm{CHCl}_{3}\right)$.

M ethyl (2S,6R)-(-)-2-hydroxymethyl-6-[2-(methoxymethoxy)-ethyl]piperidine-1-carboxylate 14
To a stirred solution of (+)-13 (1.50 g, 4.56 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(40 \mathrm{~cm}^{3}\right)$ were added $\mathrm{MOMCl}\left(0.35 \mathrm{~cm}^{3}, 5.47 \mathrm{mmol}\right)$ and Hünig's base ($0.79 \mathrm{~cm}^{3}, 6.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 10 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, and the organic layer was separated, washed with saturated brine ($10 \mathrm{~cm}^{3} \times 2$), dried and evaporated to give a pale yellow oil, which was used directly in the next step. To a stirred solution of the oil obtained above in THF ($40 \mathrm{~cm}^{3}$) was added TBAF (1.0 m in THF; 4.4 $\mathrm{cm}^{3}, 4.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 $\mathrm{cm}^{3} \times 5$). The organic extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(45 \mathrm{~g}$; hexane-acetone, $10: 1$) to afford $(-)-14\left(1.04 \mathrm{~g}, 98 \%\right.$ in 2 steps) as a colourless oil (Found: M^{+}, 261.1608. $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $\mathrm{M}, 261.1575$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3446 and 1694; δ_{H} 1.54-1.79 ($4 \mathrm{H}, \mathrm{m}$), 1.82-2.14 ($4 \mathrm{H}, \mathrm{m}$), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.46-3.60 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OMOM}$ and $\mathrm{CH}_{2} \mathrm{OH}$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.93-4.05(1 \mathrm{H}, \mathrm{m}, 2$ - or 6-H), 4.07-4.20 ($1 \mathrm{H}, \mathrm{m}, 2$ - or $6-\mathrm{H}$) and $4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right.$); $[a]_{0}^{26}-9.6$ (c 1.19, CHCl_{3}).

M ethyl (2R ,6S)-2-[2-(methoxymethoxy)ethyl]6-prop-1-enyl-piperidine-1-carboxylate 15

To a stirred solution of oxalyl chloride ($\left.0.27 \mathrm{~cm}^{3}, 3.10 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added DM SO ($0.44 \mathrm{~cm}^{3}, 6.20 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . To the mixture was added (-)-14 ($540 \mathrm{mg}, 2.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$, and stirring was continued for 45 min at $-78^{\circ} \mathrm{C}$. Triethylamine $\left(1.30 \mathrm{~cm}^{3}, 9.31 \mathrm{mmol}\right)$ was added at $-78^{\circ} \mathrm{C}$ to the mixture, the temperature of which was gradually increased to $0^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, and the organic layer was separated, washed with water ($5 \mathrm{~cm}^{3} \times 3$), dried and evaporated to give a pale yellow oil (523 mg), which was used directly in the next step. To the suspension of ethyl(triphenyl)phosphonium bromide ($1.92 \mathrm{~g}, 5.17 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added BuLi $\left(10 \% \mathrm{w} / \mathrm{v}\right.$ in hexane; $\left.2.80 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at room temperature. To the mixture was added the crude aldehyde obtained above (523 mg) in THF ($3 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 1 h at room temperature. The reaction was quenched by the addition of water $\left(10 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{cm}^{3} \times 6$). The organic extracts were combined, washed with saturated brine ($10 \mathrm{~cm}^{3} \times 1$), dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (50 g; hexane-acetone, 40:1) to afford 15 [417 mg, 74\% from (-)-14] as a colourless oil (Found: C, 61.35; H, 9.24; N, 5.24. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.69 ; \mathrm{H}, 9.29 ; \mathrm{N}, 5.16$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1698 ; \delta_{\mathrm{H}} 1.35-2.04\left(11 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{3}, 3-, 4-, 5-\mathrm{H}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OM}$ OM $), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.49(2 \mathrm{H}$, apparent t, J $6, \mathrm{CH}_{2} \mathrm{OMOM}$), $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.25-4.38(1 \mathrm{H}, \mathrm{m}$,

2-H), 4.56 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) , 5.02-5.11 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right)$ and $5.39-$ $5.72(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$.

M ethyl (2R,6R)-(-)-2-[2-(methoxymethoxy)ethyl]6-propyl-piperidine-1-carbox ylate 16
 To a stirred solution of $15(360 \mathrm{mg}, 1.32 \mathrm{mmol})$ in M eOH (12

 cm^{3}) was added 5% Pd-C (250 mg), and the resulting suspension was hydrogenated at 1 atm for 4 h . The catalyst was removed by filtration through a Celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer and washings were evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(9 \mathrm{~g}$; hexane-acetone, $10: 1)$ to give (-)-16 ($310 \mathrm{mg}, 86 \%$) as a pale yellow oil (Found: C, 61.17; H, 9.77; $\mathrm{N}, 5.18 . \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.51 ; \mathrm{H}, 9.96 ; \mathrm{N}, 5.12$); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 1693 ; \delta_{\mathrm{H}} 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 1.19-1.70(10 \mathrm{H}$, br m), 1.77-1.97 ($2 \mathrm{H}, \mathrm{m}$), $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.53(2 \mathrm{H}$, apparent t, J 7, CH COMOM_{2}), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 4.07-$ $4.23(1 \mathrm{H}, \mathrm{m}, 2$ - or $6-\mathrm{H}), 4.24-4.37(1 \mathrm{H}, \mathrm{m}, 2$ - or $6-\mathrm{H})$ and 4.62 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$); $[a]_{\mathrm{D}}^{26}-0.15\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right)$.
M ethyl (2R ,6R)-(-)-2-(2-methyllsulfonyloxyethyl)-6-propyl-piperdine-1-carboxylate 17

To a stirred solution of (-)-16 (632 mg, 2.31 mmol) in MeOH $\left(4 \mathrm{~cm}^{3}\right)$ was added concentrated hydrochloric acid $\left(0.4 \mathrm{~cm}^{3}\right)$, and the resulting solution was heated at $60^{\circ} \mathrm{C}$ for 2 h . A fter cooling, the mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}\left(4 \mathrm{~cm}^{3}\right)$ to quench the reaction, and the solvent was removed. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$, and the organic extracts were combined and evaporated to give a colourless oil, which was used directly in the next step. To a stirred solution of the alcohol obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ were added $\mathrm{M} \mathrm{sCl}\left(0.32 \mathrm{~cm}^{3}, 3.17 \mathrm{mmol}\right)$ and pyridine ($0.52 \mathrm{~cm}^{3}$, 3.17 mmol), and the resulting solution was stirred for 3 h at room temperature. The mixture was diluted with $\mathrm{Et} 2 \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$, and the organic layer was separated, washed with saturated brine ($5 \mathrm{~cm}^{3}$), dried and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-acetone, $10: 1$) to give (-)-17 ($482 \mathrm{mg}, 68 \%$ in 2 steps) as a colourless oil (Found: C, 50.58; H, 8.13; N, 4.73. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 50.79 ; \mathrm{H}, 8.20 ; \mathrm{N}, 4.56$); $v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 1686$ and $1355 ; \delta_{\mathrm{H}} 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 1.19-1.70(10 \mathrm{H}$, br, m), 1.88-2.15 ($2 \mathrm{H}, \mathrm{m}$), $3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right.$), $3.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.17-4.34\left(4 \mathrm{H}, \mathrm{m}, 2\right.$ - and $6-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{OM} \mathrm{s}\right) ;[a]_{0}^{26}$ -4.4 ($\mathrm{c} 0.77, \mathrm{CHCl}_{3}$).

M ethyl (2R,6R)-(+)-2-(2-iodoethyl)-6-propylpiperidine-1carboxylate 18

To a stirred solution of (-)-17 ($227 \mathrm{mg}, 0.73 \mathrm{mmol}$) in acetone $\left(6 \mathrm{~cm}^{3}\right)$ was added N al ($1.10 \mathrm{~g}, 7.30 \mathrm{mmol}$), and the resulting suspension was stirred at room temperature for 11 h . It was then filtered, and evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 3\right)$, and the organic extracts were combined, washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated aqueous NaHCO_{3} (5 cm^{3}) and saturated brine ($5 \mathrm{~cm}^{3}$), dried and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-acetone, $30: 1)$ to give (+)-18 (223 mg, 89%) as a pale yellow oil (Found: $\mathrm{M}^{+}, 339.0680 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{I}$ requires $\mathrm{M}, 339.0695$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1692 ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{CH}_{3}\right), 1.28-1.68(10 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.00-2.27(2 \mathrm{H}, \mathrm{m}), 3.03-3.22(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{I}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.10-4.29(2 \mathrm{H}, \mathrm{m}, 2$ - and $6-\mathrm{H}$); $[a]_{\mathrm{D}}^{26}+19.7\left(\mathrm{C} 1.34, \mathrm{CHCl}_{3}\right)$.

M ethyl (2R ,6R)-(-)-2-(hept-3-ynyl)-6-propylpiperidine-1carboxylate 19

To a stirred solution of pent-1-yne ($\left.0.21 \mathrm{~cm}^{3}, 2.14 \mathrm{mmol}\right)$ in THF ($6 \mathrm{~cm}^{3}$) was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $1.00 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the solution was then added $(+)-18(485 \mathrm{mg}, 1.43 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 19 h at room temperature. The reaction was then quenched by
the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(8 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (15 g ; hexane-acetone, 80 : 1) to give (-)-19 ($390 \mathrm{mg}, 98 \%$) as a pale yellow oil (Found: M^{+}, 279.2202. $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{M}, 279.2206$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2345,2335,2175$ and $1695 ; \delta_{\mathrm{H}} 0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 0.97$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}$), 1.10-1.85 (14 H, m), 2.09-2.25 (4 H, m, $\mathrm{CH}_{2} \mathrm{CCCH}_{2}, 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 4.16-4.21(2 \mathrm{H}, \mathrm{m}, 2$ - and $6-\mathrm{H}$); $[a]_{0}^{26}-7.6\left(\mathrm{c} 1.07, \mathrm{CHCl}_{3}\right.$).

M ethyl (2R,6R)-(-)-2-(hept-3-enyl)-6-propylperidine-1-

 carboxylate 20To liquid $\mathrm{NH}_{3}\left(5 \mathrm{~cm}^{3}\right)$ was added sodium ($112 \mathrm{mg}, 4.80 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the resulting blue solution was stirred for 30 min at $-50^{\circ} \mathrm{C}$. To the solution was added $(-)-19(135 \mathrm{mg}, 0.48$ $\mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$, and the resulting mixture was then stirred for 40 min at $-50^{\circ} \mathrm{C}$. The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to the mixture after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and water (5 cm^{3}). The aqueous layer was then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 8\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (15 g ; hexaneacetone, $80: 1$) to give (-)-20 ($128 \mathrm{mg}, 94 \%$) as a pale yellow oil (Found: C, $72.52 ; \mathrm{H}, 11.34 ; \mathrm{N}, 5.20 . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires C , 72.55; H, 11.10; N, 4.98); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1696 ; \delta_{\mathrm{H}} 0.88(3 \mathrm{H}$, t, J 7), $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$), $1.26-1.66(14 \mathrm{H}, \mathrm{m}, 3-, 4-, 5-\mathrm{H})$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.92-1.98 (4 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.13(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, 2- and 6-H) and 5.38-5.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$); $[a]_{\mathrm{D}}^{26}-1.7$ (c 1.01, CHCl_{3}).

(2R ,6R)-(-)-2-(H ept-3-enyl)-6-propylpiperidine 21

To a stirred solution of $\operatorname{PrSH}\left(0.065 \mathrm{~cm}^{3}, 0.71 \mathrm{mmol}\right)$ in H M PA $\left(0.3 \mathrm{~cm}^{3}\right)$ was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $0.46 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. To the solution was added (-)-20 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF (0.5 cm^{3}) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 2 days at room temperature. The reaction was quenched by the addition of 10% aqueous hydrochloric acid to the mixture after which the aqueous layer was separated and washed with $\mathrm{Et}_{2} \mathrm{O}$ (5 $\mathrm{cm}^{3} \times 3$). The aqueous layer was adjusted to pH 10 with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (20 g ; benzene-acetone, $100: 1$) to give (-)21 ($33 \mathrm{mg}, 83 \%$) as a pale yellow oil (Found: $\mathrm{M}^{+}, 223.2254$. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}$ requires M , 223.2298); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 994 ; \delta_{\mathrm{H}} 0.88$ 1.47 ($17 \mathrm{H}, \mathrm{m}$), 1.60 ($1 \mathrm{H}, \mathrm{br}$), $1.65(1 \mathrm{H}, \mathrm{m}), 1.71-1.79(4 \mathrm{H}, \mathrm{m})$, 1.91-2.07 (2 H, m), 2.43-2.53 ($2 \mathrm{H}, \mathrm{m}, 2$ - and 6-H), 5.38-5.42 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$); $[a]_{\mathrm{D}}^{26}-2.76\left(\mathrm{c} 0.49, \mathrm{CHCl}_{3}\right)$.

(2R ,6R)-(-)-1-C hloro-2-(hept-3-enyl)-6-propylpiperidine 22

To a stirred solution of (-)-21 ($230 \mathrm{mg}, 1.03 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10$ cm^{3}) was added N -chlorosuccinimide ($145 \mathrm{mg}, 1.08 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . A fter this the mixture was evaporated, and the residue was purified by column chromatography on SiO_{2} (20 g ; hexane) to give (-)-22 ($236 \mathrm{mg}, 89 \%$) as a pale yellow oil (Found: M^{+}, 257.6752. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NCl}$ requires $\mathrm{M}, 257.6747$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2360, 1458, 967 and $668 ; \delta_{\mathrm{H}} 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{t}$, J 7, CH ${ }_{3}$) , 1.25-1.42 ($8 \mathrm{H}, \mathrm{m}$), 1.64 ($6 \mathrm{H}, \mathrm{br}$), 1.91-2.05 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$), $2.75(2 \mathrm{H}, \mathrm{br} 5,2-\mathrm{and} 6-\mathrm{H})$ and $5.35-5.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$); $[a]_{\mathrm{D}}^{26}-4.2\left(\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right)$.

(-)-Indolizidine 223AB 11.

To a stirred solution of (-)-22 ($20 \mathrm{mg}, 0.0761 \mathrm{mmol}$) in THF $\left(0.8 \mathrm{~cm}^{3}\right)$ were added $\mathrm{CuCl}(0.8 \mathrm{mg}, 0.00761 \mathrm{mmol})$ and CuCl_{2}
$(10.4 \mathrm{mg}, 0.0761 \mathrm{mmol})$ in THF $\left(0.4 \mathrm{~cm}^{3}\right), \mathrm{AcOH}\left(0.2 \mathrm{~cm}^{3}\right)$ and water $\left(0.2 \mathrm{~cm}^{3}\right)$ at $-45^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 40 min at $-45^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 5 m aqueous NaOH to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{cm}^{3} \times 8$). The organic extracts were combined, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$) and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(8 \mathrm{~g}$; hexane-benzene, $5: 1)$ to give the indolizidine ($10.1 \mathrm{mg}, 50 \%$) as a pale yellow oil; δ_{H} 0.88 and 0.92 (each 3 H , each t , each J 7), 1.14-2.01 ($18 \mathrm{H}, \mathrm{m}$), 2.68-2.78 ($1 \mathrm{H}, \mathrm{m}$), 3.06-3.18 ($1 \mathrm{H}, \mathrm{m}$), 3.68-3.77 ($1 \mathrm{H}, \mathrm{m}$) and 4.33-4.44 ($1 \mathrm{H}, \mathrm{m}$).

To a stirred solution of $\mathrm{Bu}_{3} \mathrm{SnH}\left(0.1 \mathrm{~cm}^{3}, 0.36 \mathrm{mmol}\right)$ and AIBN ($3 \mathrm{mg}, 0.018 \mathrm{mmol}$) in benzene ($1 \mathrm{~cm}^{3}$) was added the indolizidine obtained above ($19 \mathrm{mg}, 0.073 \mathrm{mmol}$) in benzene (1 cm^{3}) under reflux during 30 min , and the resulting solution was refluxed for 40 min . A fter cooling, the mixture was concentrated by solvent removal, after which it was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(5 \mathrm{~cm}^{3}\right)$ and aq. $\mathrm{KF}\left(7 \mathrm{~cm}^{3}\right)$. The insoluble material was filtered off, and the organic layer was separated, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to give a pale yellow oil. This was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(20 \mathrm{~g}\right.$; hexane- $\left.\mathrm{CHCl}_{3}, 10: 1\right)$ to give (-)-11 ($7.0 \mathrm{mg}, 36 \%$) as a pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 2955,2800$ and $1465 ; \delta_{\mathrm{H}} 0.91(6 \mathrm{H}, \mathrm{m}), 1.08(4 \mathrm{H}, \mathrm{m}), 1.36$ ($9 \mathrm{H}, \mathrm{m}$), $1.71(7 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{br} \mathrm{m})$ and $3.30(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}$ 14.17, 14.45, 19.00, 22.98, 24.69, 24.98, 26.39, 29.15, 30.10, $30.99,32.42,35.92,56.61,58.51$ and 59.01 ; [a] ${ }_{D}^{26}-91.4$ (c 0.175 hexane) $\left\{\right.$ lit., ${ }^{6 c}[a]_{0}^{20}-101$ (c 2.3, hexane) \}.

M ethyl (2S,6R)-(-)-2-(tert-butyldimethylsilox ymethyl)-6-prop-2-enylpiperidine-1-carboxylate 23

To a stirred solution of oxalyl chloride ($0.30 \mathrm{~cm}^{3}, 3.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(22 \mathrm{~cm}^{3}\right)$ was added DM SO ($\left.0.49 \mathrm{~cm}^{3}, 6.94 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . To the mixture was added (+)- 13 ($766 \mathrm{mg}, 2.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$, and the stirring was continued for 30 min at $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}\left(1.45 \mathrm{~cm}^{3}, 10.40 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$, the temperature of which was gradually increased to $0^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$, after which the organic layer was separated, washed with water (8 $\mathrm{cm}^{3} \times 5$), dried and evaporated to give a pale yellow oil (798 mg). This was used directly in the next step. To the suspension of methyl(triphenyl) phosphonium iodide ($3.27 \mathrm{~g}, 8.10 \mathrm{mmol}$) in THF ($22 \mathrm{~cm}^{3}$) was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $4.45 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at room temperature. To the mixture was added the crude aldehyde obtained above (798 mg) in TH F $\left(8 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 14 h at room temperature. The reaction was quenched by the addition of water $\left(10 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3} \times 4\right)$. The organic extracts were combined, washed with saturated brine ($10 \mathrm{~cm}^{3} \times 1$), dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (23 g ; hexane-acetone, $50: 1$) to afford (-)-23[348 $\mathrm{mg}, 48 \%$ from $(+)-13]$ as a pale yellow oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 270.1518. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{Si}$ requires $\mathrm{M}-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}, 270.1524\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 3075,2952$ and 1700; $\delta_{\mathbf{H}} 0.07$ [$6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$], $0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.40-1.70(6 \mathrm{H}, \mathrm{m}, 3-$, 4-, 5-H), 2.09-2.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=$), $3.46-3.68(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OTBS}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 4.15(2 \mathrm{H}, \mathrm{br}, 2-\mathrm{and} 6-\mathrm{H})$, 4.99-5.04 ($2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}$) and 5.66-5.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$); $[a]_{\mathrm{D}}^{26}$ -4.9 ($\mathrm{c} 1.01, \mathrm{CHCl}_{3}$).

M ethyl (2S,6S)-(-)-2-hydroxymethyl-6-propylpiperidine-1carboxylate 24
 To a stirred solution of (-)-23 ($97 \mathrm{mg}, 0.30 \mathrm{mmol}$) in MeOH (5

 cm^{3}) was added $5 \% \mathrm{Pd}-\mathrm{C}(60 \mathrm{mg})$, and the resulting suspension was hydrogenated at 1 atm for 6 h . The catalyst was removed by filtration through a Celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer and washings were evaporated to give acolourless oil, which was used directly in the next step. To a stirred solution of the oil obtained above in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added TBAF (1 m in THF, $0.32 \mathrm{mmol} ; 0.32 \mathrm{~cm}^{3}$) at room temperature, and the resulting mixture was stirred for 1 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(5 \mathrm{~g}$; hexane-acetone, $20: 1$) to afford (-)-24 [57 mg, 90% from (-)23] as a colourless oil (Found: M^{+}, 215.1534. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{M}, 215.1521$); $v_{\text {max }}$ (neat)/cm ${ }^{-1} 3440,2954,2871$ and 1694; $\delta_{\mathrm{H}} 0.92$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}$), 1.20-1.65 ($10 \mathrm{H}, \mathrm{m}, 3-, 4-, 5-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.64\left(2 \mathrm{H}\right.$, apparent d, J 7.5, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.70$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.15(1 \mathrm{H}, \mathrm{br}, 2-$ or $6-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{br}, 2$ - or $6-$ H); $[a]_{\mathrm{D}}^{26}-19.3$ ($\mathrm{C} 0.50, \mathrm{CHCl}_{3}$).

M ethyl (2S,6S)-(+)-2-(2-methoxyethenyl)-6-propylpiperidine-1carboxylate 25

To a stirred solution of oxalyl chloride ($0.057 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added D M SO ($0.093 \mathrm{~cm}^{3}, 1.31 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . To the mixture was added (-)-24 (94 mg, 0.44 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$, and the stirring was continued for 30 min at $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.27 \mathrm{~cm}^{3}, 1.97 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$, and the temperature was gradually increased to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ and the organic layer was separated and washed with water ($3 \mathrm{~cm}^{3} \times 5$), dried and evaporated to give a pale yellow oil (107 mg) which was used directly in the next step. To the suspension of methoxymethyl(triphenyl) phosphonium chloride ($375 \mathrm{mg}, 1.09 \mathrm{mmol}$) in THF $\left(3 \mathrm{~cm}^{3}\right)$ was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $0.56 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at room temperature. To the mixture was added the crude aldehyde obtained above (107 mg) in THF ($2 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 17 h at room temperature. The reaction was quenched by the addition of water ($2 \mathrm{~cm}^{3}$) to the reaction mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 3\right)$. The organic extracts were combined, washed with saturated brine ($10 \mathrm{~cm}^{3} \times 1$), dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (3 g; hexane-acetone, 200:1) to afford (+)25 [$65.5 \mathrm{mg}, 62 \%$ from (-)-24] as a pale yellow oil ($3: 2$ mixture of E and Z isomers) (Found: M^{+}, 241.1534. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{M}, 241.1521$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 2936,2869$ and $1694 ; \delta_{\mathrm{H}}{ }^{3}$ $0.87-0.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.21-1.76(10 \mathrm{H}, \mathrm{br}$ m, 3-, 4-, 5-H and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.50\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.59\left(1.8 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.16(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.55(0.6 \mathrm{H}$, apparent dd, J 8 and $6.5,2-\mathrm{H}), 4.73(0.4 \mathrm{H}, \mathrm{br} \mathrm{m}, 2-\mathrm{H}), 4.95(0.4 \mathrm{H}$, apparent dd, J 12.5 and $9,=\mathrm{CH}), 5.16(0.6 \mathrm{H}, \mathrm{br} \mathrm{m},=\mathrm{CH}), 5.82$ [0.6 H , apparent d, J $6.5,=\mathrm{C}(\mathrm{OM} \mathrm{e)H}], 6.56[0.4 \mathrm{H}$, apparent d, j $12.5,=\mathrm{C}(\mathrm{OM} \mathrm{e}) \mathrm{H}] ;[a]_{\mathrm{D}}^{26}+9.2\left(\mathrm{c} 0.63, \mathrm{CHCl}_{3}\right)$.

M ethyl (2S,6S)-(-)-2-(2-hydroxyethyl)-6-propylpiperidine-1carboxylate 26

To a stirred solution of $(+)-\left(25(26 \mathrm{mg}, 0.11 \mathrm{mmol})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \mathrm{~cm}^{3}\right)$ was added concentrated hydrochloric acid (1 drop), and the mixture was stirred for 30 min at room temperature. The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ to the mixture, after which the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{cm}^{3} \times 5$), and the organic layer and extracts were combined, dried and evaporated to give a pale yellow oil, which was used directly in the next step. To a stirred solution of the crude aldehyde obtained above in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(4.1$ $\mathrm{mg}, 0.11 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 min at room temperature The reaction was quenched by the addition of 10% aqueous hydrochloric acid to the mixture and then the solvent was removed. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$, and the organic extracts were com-
bined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(1 \mathrm{~g}$; hexaneacetone, $40: 1$) to afford (-)-26 [17 mg, 68\% from (+)-25] as a pale yellow oil (Found: M^{+}, 229.1668. $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires M , 229.1676); $v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1} 3446,2937,2870$ and 1693; $\delta_{\mathrm{H}} 0.91$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}$), 1.16-1.89 (12 H, br m, 3-, 4-, 5-H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.44-3.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $3.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.14(1 \mathrm{H}$, br, 2 - or $6-\mathrm{H})$ and $4.41(1 \mathrm{H}, \mathrm{br}, 2$ - or $6-\mathrm{H}) ;[a]_{0}^{26}-7.4\left(\mathrm{c} 0.58, \mathrm{CHCl}_{3}\right)$.

M ethyl (2S,6S)-(-)-2-(2-iodoethyl)-6-propylpiperidine-1carboxylate 18

To a stirred solution of (-)-26 ($22.6 \mathrm{mg}, 0.097 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ were added pyridine ($0.048 \mathrm{~cm}^{3}, 0.592 \mathrm{mmol}$) and $\mathrm{M} \mathrm{sCl}\left(0.029 \mathrm{~cm}^{3}, 0.30 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1.5 h at room temperature. The reaction was quenched by the addition of saturated aqueous NaHCO_{3} (5 cm^{3}) to the mixture, after which the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$, and the combined organic layer and extracts were dried and evaporated to give a pale yellow oil. This was purified by column chromatography on $\mathrm{SiO}_{2}(3 \mathrm{~g}$; hexane-acetone, 10:1) to afford the methanesulfonate ($22.4 \mathrm{mg}, 74 \%$) as a pale yellow oil (Found: $\mathrm{M}^{+}, 307.1425 . \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}, 307.1451$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1686$ and $1355 ; \delta_{\mathrm{H}} 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 1.19-$ $1.70(10 \mathrm{H}, \mathrm{br} m), 1.88-2.15(2 \mathrm{H}, \mathrm{m}), 3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right)$, $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.17-4.34(4 \mathrm{H}, \mathrm{m}, 2-, 6-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{OM} \mathrm{s}$); $[a]_{0}^{26}+9.9$ (c $1.07, \mathrm{CHCl}_{3}$).

To a stirred solution of the methanesulfonate obtained above $\left(22.4 \mathrm{mg}, 0.073 \mathrm{mmol}\right.$) in acetone ($1 \mathrm{~cm}^{3}$) was added N al (109 $\mathrm{mg}, 0.73 \mathrm{mmol}$), and the resulting suspension was stirred for 16 h at room temperature. The reaction mixture was filtered through a Celite pad, and the filtrate was evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 3\right)$, and the organic extracts were combined, washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated aqueous $\mathrm{NaHCO}_{3}\left(3 \mathrm{~cm}^{3}\right)$ and saturated brine ($3 \mathrm{~cm}^{3}$), dried and evaporated to give a pale yellow oil. This was purified by column chromatography on SiO_{2} (1 g ; hexane-acetone, $100: 1$) to give (-)-18 ($21.7 \mathrm{mg}, 87 \%$) as a pale yellow oil (Found: M^{+}, 339.0688. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N} \mathrm{O}_{2} \mathrm{I}$ requires $\mathrm{M}, 339.0695$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1692; $\delta_{\mathrm{H}} 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right), 1.28-1.68(10 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.00-$
2.27(2 H, m), 3.03-3.22(2 H, m, CH ${ }_{2}$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) and 4.10-4.29 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $6-\mathrm{H}$); $[a]_{\mathrm{D}}^{26}-20.7\left(\mathrm{c} 0.93, \mathrm{CHCl}_{3}\right)$. The spectral features of the product were identical with those of $(+)-18$.

Acknowledgements

We are grateful to Professor C. K ibayashi, Tokyo U niversity of Pharmacy \& Life Science, for kindly providing us with ${ }^{1} \mathrm{H}$ NMR and mass spectra of (+)-monomorine I. This work was financially supported in part by a Grant-in Aid for Scientific Research (N . 03670994) from the M inistry of Education, Science and Culture of Japan.

R eferences

1 Part 19, T. M omose, M. Toshima, N. Toyooka, Y. Hirai and C. H. Eugster, J. Chem. Soc., Perkin Trans. 1, 1997, 1307; Part 18, O. M uraoka, B.-Z. Zheng, K. Okumura, G. Tanabe, T. M omose and C. H. E ugster, J. C hem. Soc., Perkin Trans. 1, 1996, 1567.

2 H. Izawa, R. Shirai, H. K awasaki, H.-D. Kim and K. Koga, Tetrahedron Lett., 1989, 30, 7221; R. Shirai, K. A oki, D. Sato, H.-D. K im, M . M urakata, T. Y asukata and K . K oga, C hem. P harm. Bull., 1994, 42, 690.
3 This work was presented in part as a preliminary account: T. M omose, N. Toyooka, S. Seki and Y. H irai, Chem. P harm. Bull., 1990, 38, 2072.
4 F. J. Ritter, I. E. M. Rotgans, E. Talman, P. E. J. Verwiel and F. Stein, Experientia, 1973, 29, 530.
5 (a) N. Y amazaki and C. K ibayashi, Tetrahedron L ett., 1988, 29, 5767; (b) H. Takahata, H. B andoh and T. M omose, Tetrahedron, 1993, 49, 11 205; (c) G. Solladié and G.-H. Chu, Tetrahedron Lett., 1996, 37, 111 and references therein.
6 (a) J. W. Daly, H. M. G arraffo and T. F. Spande, The Alkaloids, ed. G. A. C ordell, A cademic Press, San Diego, 1993, vol. 43, p. 185; (b) T. F. Spande, J. W. D aly, D. J. H art, Y.-M . Tsai and T. L. M acdonald, Experientia, 1981, 37, 1242; (c) H. Takahata, H. Bandoh and T. M omose, H eterocycles, 1995, 41, 1797 and references therein.

7 E. J. Corey and P. Y eun, Tetrahedron Lett., 1989, 30, 5825.
8 C. A. Broka and K . K . Eng, J. Org. C hem., 1986, 51, 5043.

Paper 6/07981D
R eceived 25th N ovember 1996
A ccepted 7th J anuary 1997

[^0]: \dagger Present address: Department of Chemistry, Toyama University, G ofuku 3190, Toyama 930, Japan.

